A note on Poisson approximation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Notes on Poisson Approximation

i=1 pi ≤ max 1≤i≤n pi, (6.1) where λ := EW = ∑n i=1 pi. Clearly, if the pi’s are not all small, there may be little content in (6.1). This is to be expected, since then EW = λ and VarW = λ − ∑n i=1 p 2 i need no longer be close to one another, whereas Poisson distributions have equal mean and variance. This makes it more natural to try to find a family of distributions for the approximation wit...

متن کامل

A Note on Belief Structures and S-approximation Spaces

We study relations between evidence theory and S-approximation spaces. Both theories have their roots in the analysis of Dempsterchr('39')s multivalued mappings and lower and upper probabilities, and have close relations to rough sets. We show that an S-approximation space, satisfying a monotonicity condition, can induce a natural belief structure which is a fundamental block in evidence theory...

متن کامل

A Note on n-ary Poisson Brackets

A class of n-ary Poisson structures of constant rank is indicated. Then, one proves that the ternary Poisson brackets are exactly those which are defined by a decomposable 3-vector field. The key point is the proof of a lemma which tells that an n-vector (n ≥ 3) is decomposable iff all its contractions with up to n− 2 covectors are decomposable. In the last years, several authors have studied g...

متن کامل

A Note on n - ary Poisson BracketsbyPeter

A class of n-ary Poisson structures of constant rank is indicated. Then, one proves that the ternary Poisson brackets are exactly those which are deened by a decomposable 3-vector eld. The key point is the proof of a lemma which tells that an n-vector (n 3) is decomposable ii all its contractions with up to n ? 2 covectors are decomposable. In the last years, several authors have studied genera...

متن کامل

A Note on Poisson Lie Algebroids

The Lie algebroid [10] is a generalization of both concepts of Lie algebra and integrable distribution, being a vector bundle (E, π, M) with a Lie bracket on his space of sections with properties very similar to those of a tangent bundle. The Poisson manifolds are the smooth manifolds equipped with a Poisson bracket on their ring of functions. I have to remark that the cotangent bundle of a Poi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Trabajos de Estadistica Y de Investigacion Operativa

سال: 1985

ISSN: 0041-0241

DOI: 10.1007/bf02888545